Sugeng Rianto
Pusat Teknologi Bahan Bakar Nuklir (PTBBN), BATAN Kawasan Puspiptek-Tangerang Selatan 15314, Banten

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Natural B

Simulation of TLD-700 (Lif; Mg, Ti) for Determination of Hp Equivalent Dose (10) on Radiation Workers (Gamma) with MCNPX Approach Pradipta, Aisyah Dianing; Rianto, Sugeng; Bunawas, Bunawas
Natural B Vol 4, No 1 (2017)
Publisher : Natural B

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (403.211 KB) | DOI: 10.21776/ub.natural-b.2017.004.01.6

Abstract

Radiation workers are compulsory to monitoring radiation dose for reduce the effects of ionizing radiation on the body. Government through similar BAPETEN maximum dose for radiation workers is 20 mSv/year. One of the personal monitoring tool that is widely used is the TLD-700 (specially for gamma radiation). The equivalent dose to the workers body to a depth of 10mm (Hp(10)) able to be predicted from a simulation approach MCNPX. To simulation needed input model of geometry which adapted to the geometry experiments. The simulation results at the source position vertical to the dose rate is obtained 8,565mSv/h, which shows a difference of 1.5% on the results of the experiment, so the Hp(10) dose can be determined. This experiment able to simulated for contamination source 137Cs on the floor position unable to be done experimentely contamination source. Estimation through simulation, the dose rate on the floor at 14.920 mSv/h. The results showed the difference of dose rate through dose rate 75% vertical source larger than the vertical direction. According to the result need to be calibration TLD-700 for the source position from the bottom. Because the greater the dose rate (from below), the greater the Hp(10) dose is received. With the result clear that considerable potential MCNPX used to estimate personal Hp(10) dose for radiation workers, specially in relation to the case of a radiation accident.
Monte Carlo Simulation to Determine Deposition Ratio of Dosage in a-SI Epid with Dose Deposition on Water Herwiningsih, Sri; Rianto, Sugeng; Yuana, Firdy
Natural B, Journal of Health and Environmental Sciences Vol 2, No 3 (2014)
Publisher : Natural B, Journal of Health and Environmental Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1094.941 KB) | DOI: 10.21776/ub.natural-b.2014.002.03.1

Abstract

The study aimed to explore the use of a-Si EPID as a dosimeter for IMRT delivery. The main objective of the study was to determine the ratio of dose deposited in a-Si EPID and the dose deposited in water. Linac used in the simulation was Electa Precise Linac and A-Si EPID model used in the study was based on the configuration of iView GT Elekta a-Si EPID. Study the characteristic of energy deposition at a-Si EPID and water detector shows that the energy deposition at a-Si EPID detector is higher than that of water detector at low photon energy (<0.1 MeV). This is caused by an enhancement of photoelectric interaction between photon beam and a-Si EPID detector at low energy X-rays. The simulation of dose deposition by using square fields show that the ratio between the dose deposition of a-Si EPID and the dose deposition of water detector (α) increases with an increase of the field size. The value of α ranges from 0.60 – 0.66. The similar result was shown in the simulation of dose deposition by using IMRT beam, in which the value of α ranges from 0.63 – 0.64. The α value is useful to relate the measured dose from detector to the equivalent dose of water, which is often used as a reference medium in radiotherapy dosimetry. Â